Basics Of Machine Learning And Its Types

Machine learning

It is a subset of artificial learning which provides the ability to learn automatically and improve from experiences without being explicitly programmed
 a) Supervise: in this, we teach the machine by using labeled data 
 Problem types: classification and regression

 Type of data: labeled data             

 Training: external supervision              

 

 Aim: forecast 
 Approach: map labeled output to the known output

 Popular algorithm: 
 Applications: 
b) un supervised: in this, we teach the machine by using unlabeled data and it perform grouping function to give output
 Problem type: association and clustering

   
 Types of data: 



            Training:              

          Aim:                          

        Approach:              

         Popular algorithm:        

         Applications:             

c) Reinforcement: in reinforcement, an agent interacts with its environment by producing actions and recovering errors and rewards

 

 Types of problems:

 types of data: no predefined data 
                                                           

            
 training: no supervision                         

             

 aim: learn a series of Afton 
 approach: follow trial and error method

 popular algorithm:     

 applications: